ar X iv : m at h / 06 11 48 9 v 1 [ m at h . A P ] 1 6 N ov 2 00 6 GLOBAL EXISTENCE OF NULL - FORM WAVE EQUATIONS IN EXTERIOR DOMAINS

نویسنده

  • CHRISTOPHER D. SOGGE
چکیده

Abstract. We provide a proof of global existence of solutions to quasilinear wave equations satisfying the null condition in certain exterior domains. In particular, our proof does not require estimation of the fundamental solution for the free wave equation. We instead rely upon a class of Keel-Smith-Sogge estimates for the perturbed wave equation. Using this, a notable simplification is made as compared to previous works concerning wave equations in exterior domains: one no longer needs to distinguish the scaling vector field from the other admissible vector fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 06 11 45 2 v 1 [ m at h . A G ] 1 5 N ov 2 00 6 UNIRATIONALITY OF CERTAIN SUPERSINGULAR K 3 SURFACES IN CHARACTERISTIC

We show that every supersingular K3 surface in characteristic 5 with Artin invariant ≤ 3 is unirational.

متن کامل

ar X iv : m at h / 01 11 20 8 v 1 [ m at h . D G ] 1 9 N ov 2 00 1 HOMOGENEOUS BÄCKLUND TRANSFORMATIONS OF HYPERBOLIC MONGE - AMPÈRE SYSTEMS

A Bäcklund transformation between two hyperbolic Monge-Am-p` ere systems may be described as a certain type of exterior differential system on a 6-dimensional manifold B. The transformation is homogeneous if the group of symmetries of the system acts transitively on B. We give a complete classification of homogeneous Bäcklund transformations between hyperbolic Monge-Ampère systems.

متن کامل

ar X iv : m at h / 06 11 38 6 v 1 [ m at h . R A ] 1 3 N ov 2 00 6 Quasi Q n - filiform Lie algebras ∗

In this paper we explicitly determine the derivation algebra, automorphism group of quasi Qn-filiform Lie algebras, and applying some properties of root vector decomposition we obtain their isomorphism theorem. AMS Classification: 17B05; 17B30

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007